Health Risk of Consuming Dried Crayfish Sold in the Bayelsa State Markets, Nigeria

Erepamowei Young* And Douye Parkinson Markmanuel

Department of Chemical Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, P.M.B 071, Yenagoa, Bayelsa State, Nigeria. *Corresponding author E-mail: <u>erekomu2004@yahoo.co,uk</u> DOI: <u>10.56201/ijccp.vol.11.no2.2025.pg37.44</u>

Abstract

Despite the wide range of benefits (source of vitamin B, copper, selenium, protein, iron, zinc, and amino acids) we get for eating crayfish, it could still be harmful to humans if there are certain levels of heavy metal contaminants in them when consumed. In this paper, heavy metals were determined (using flame atomic absorption spectrophotometer) in dried crayfish obtained in Markets in Bayelsa State, Nigeria. Prior to this instrumental analysis, dried samples were aciddigested via standard analytical methods. The health risks of consuming these samples were also assessed by using standard methods such as Estimated Daily Intake, Hazard Quotient, Hazard Index, Risk Index. For both children and adult (with some exception), metals may not pose any health risk because the Estimated Daily Intake for all elements were less than the Rfd values. Also, the Hazard Quotients and Hazard Indices do not indicate any health risk because they were less than 1. The RI values of Cr in all samples were significant for both children and adults and Pb in all samples were insignificant for both children and adults. Cd and Ni in samples A - D were not computed because there concentrations were below detection limit. The RI values of Cd were significant in all samples except in sample E. The RI values of Cr were significant in all samples except in samples E and G. With the exception of few samples, the health risk assessments show that crayfish samples are safe for consumption.

Keywords: crayfish, Hazard, Quotient, Index

INTRODUCTION

There is a worldwide use of crayfish as a constituent in the preparation of various meals and it is known for both its great taste and lot of vitamin minerals (Ahmad et al., 2013).

Categorized as seafood, studies have shown that cooked crayfish is rich in vitamin B, copper, selenium, protein, iron, zinc, and amino acids. And they help promote body metabolism as well as regenerating body cells. The omega-3 fatty acids contained in crayfish help to promote eyesight by reducing the risks of loss vision and macular degeneration (Shaban & Safwat, 2015).

Despite the wide range of benefits we get for eating crayfish, it could still be harmful to humans if there are certain levels of heavy metal contaminants in them when consumed. The crayfish can be contaminated with heavy metals when they are exposed to polluted environment (water, air, and land) (Balasubramanian *et al* 2009; Banfalvi, 2011). The health effects of ingesting heavy metals were reported in the literature (Akesson *et al*, 2008; Gladys, 2010; Kirmani *et al* 2011; James, 2011; Bolton *et al*, 2011).

Different levels of heavy metals in crayfish were reported by different researchers (Igbuku, 2015; (Al-Ubaidi, *et al*, 2014; Guner, 2010; Kurun *et al*, 2009; Adah *et al*, 2013; Qian *et al*, 2015; Waribo *et al* 2019). The aim of this study was to assess the health risk of consuming dried crayfish sold in markets in Bayelsa State.

MATERIALS AND METHODS

Materials

An Analyst 800 atomic absorption spectrometer from Perkin Elmer (Perkin Elmer, Norwalk, USA) All reagents were of analytical reagent grade (E. Merck, Darmstadt, Germany)

METHOD: sampling/sample preparation

Crayfish samples, Solar thermo elemental Atomic Absorption Spectrophotometer (Flame AAS) mode: S4=71096.

Eight composite crayfish samples were made (labeled A, B, C, D, E, F, and G) from 24 saimples purchased from different markets in Bayelsa State, Nigeria. Samples were ground to fine powder. 1.0 g of each of the ground composte sample, 30 mL of 65 % HNO3 was added, and then the mixture was boiled gently over a hot plate (90 °C) for 1–2 h or until a clear solution was obtained. Later, 2.5 mL of 65 % HNO3 was added, followed by further heating until all the brown sample has turned white or colourless.

HEALTH RISK

The risk of consuming crayfish contaminated with heavy metals was assessed by computing the estimated daily intake (EDI), hazard quotient (HQ), hazard index (HI), and risk index (RI). These health risk parameters were calculated using equations 1, 2, 3, and 4 [14]:

$EDI(mg/kg/day) = \frac{C_{metal} \times W}{BW}$	<i>T_{fish}</i> 1
$HQ = \frac{EDI}{Pfd}$	
$HI = \sum_{i=1}^{KJu} HQ_i \dots \dots$	
$RI = EDI \times SF$	

Where; EDI = estimated daily intake; $C_{metal} = concentration of metal in mg/kg$; $W_{fish} = represents$ the daily mean ingestion of fish; BW = body weight; Rfd = reference dose values; HQ = hazard quotient; HI = hazard index; RI = risk index; SF = cancer slope factor. The standard values of parameters are given in Table 1 [14].

		Children	A dult			
		Children	Adult			
Wcaryfish		0.027	0.041	kg/day		
BW		30	70	kg/day		
As	Zn	Fe	Ni	Pb		
0.003	0.3	0.36	0.2	0.004	Rfds (mg/	'kg/day)
1.5			0.91	0.0085	cancer	slope
					factor	
Cr	Cu	Cd	Hg	Mn		
0.003	0.04	0.001	0.0005	0.014	Rfds (mg/	'kg/day)
0.5		0.38			cancer	slope
					factor	_

Table 1. Standard values of variables in equations

RESULTS AND DISCUSSION

The results of this investigation are given in Tables 2 - 6; the mean concentrations of the metals are given in Table 2 and the health risk indices are given in Tables 3 - 6. The Estimated Daily Intake (EDI), Hazard Quotient (HQ), Hazard Index (HI), and Risk Index (RI) are respectively given in Tables 3, 4, 5, and 6.

	Concen	trat	ion (mg/	kg)										
sample	Cı	r	Pb		Cd		Ni		Zn		Fe		Cu	
Α	3.546		0.011	±	BDL		BDL		1.119 ±		2.321	±	1.002	±
	± 0.02		0.02								0.01		0.01	
В	0.894	<u>+</u>	0.009	±	BDL		BDL		2.758	±	0.961	±	2.031	±
	0.01		0.01						0.01		0.02		0.20	
С	2.666	<u>+</u>	0.015	±	BDL		BDL		0.533	±	1.589	±	0.192	±
	0.01		0.01						0.01		0.02		0.20	
D	1.027	±	0.004	±	BDL		BDL		2.182	±	4.523	±	1.162	±
	0.02		0.01						0.20		0.01		0.01	
Ε	2.587	±	2.985	±	0.05	±	0.114	±	2.547	±	5.014	±	2.214	±
	0.01		0.20		0.02		0.02		0.01		0.01		0.01	
F	4.368		1.547	\pm	0.65	\pm	1.247	<u>+</u>	4.854	\pm	6.871	±	3.247	±
	± 0.01		0.02		0.02		0.01		0.02		0.01		0.01	
G	8.987		6.332	\pm	1.987	±	0.014	\pm	3.417	\pm	7.014	\pm	4.014	\pm
	± 0.20		0.02		0.01		0.20		0.01		0.02		0.02	
Η	5.811		5.874	\pm	2.214	±	1.241	\pm	1.24	\pm	4.214	\pm	2.987	\pm
	± 0.01		0.01		0.01		0.20		0.02		0.20		0.20	
WHO	0.05		2		0.5		0.2		60		40		30	
permiss														
-ible														
limits														

Table 2. Mean concentrations of neavy metals	Table 2.	Mean	concentrations	of heavy	metals
--	----------	------	----------------	----------	--------

Cr levels in samples were above WHO permissible limits. The concentrations of Pb in samples A, B, C, D, and F were below WHO permissible limits while the concentrations were above the limits in samples E, G, and H. Cd levels were below detection limits in Samples A, B, C, and D; levels were below limits in Sample E; levels were above limits in Samples F, G, and H. The concentrations of Ni in Samples A, B, C, and D were below detection limits while levels of this metals were below WHO limits in Samples E and G. concentrations were above WHO limits in Samples F and G. The concentrations of Zn, Fe, and Cu were below WHO permissible limits in all samples.

Concentrations of heavy metals (under investigation in this paper) were less than levels reported in this paper (Victor et al.; Igbuku, A.U. 2015; Waribo et al., 2015; Anisha et al., 2023). The descrepancies in concentrations may be due differences in sources of samples and differences in sample preparation methods.

For the children risk assessments, the EDI values for all elements (Table 2) were less than their Rfd values indicating that no health risk is associated for consuming these dried seafoods. The HQ (Table 3) and HI (Table 4) values do not indicate any health risk because they were less than 1.

For the adult risk assessment, the EDI values (Table 2) were less than their Rfd values indicating that no health risk is associated with the consumption of these dried seafoods. The HQ (Table 3) and HI (Table 4) values do not indicate any health risk because they were less than 1.

The EDI (Table 2), HQ (Table 3) and RI (Table 5) values for Cd and Ni in Samples A, B, C, and were not computed because concentration of these metals were below detection limits.

The risk index (RI) values (which represents the probability of developing any type of cancer over a lifetime) are given in Table 5. When RI is $> 10^{-4}$ and RI is $< 10^{-4}$, the probability of developing cancer over a lifetime is considered respectively significant and insignificant. The RI values of Cr in all samples were significant for both children and adults and Pb in all samples were insignificant for both children and adults A - D were not computed because there concentrations were below detection limit. The RI values of Cd were significant in all samples except in sample E. The RI values of Cr were significant in all samples E and G.

Table 3. EDI values of metals in crayfish samples

	EDI VA	LUES		-				
	Concent	ration in r	ng/kg					
		Pb	Cd	Ni	Zn	Fe	Cu	
	Cr							
	0.105	0.005	.t. t.	.11.	1.015	2 00 F	0.005.04	
Α	3.19E-	9.90E-	**	**	1.01E-	2.09E-	9.02E-04	Children
	03	06			03	03		
	2.08E-	6.44E-	**	**	6.55E-	1.36E-	5.87E-04	Adult
	03	06			04	03		
B	8.05E-	8.10E-	**	**	2.48E-	8.65E-	1.83E-03	Children
	04	06			03	04		
	5.24E-	5.27E-	**	**	1.62E-	5.63E-	1.19E-03	Adult
	04	06			03	04		
С	2.40E-	1.35E-	**	**	4.80E-	1.43E-	1.73E-04	Children
	03	05			04	03		
	1.56E-	8.79E-	**	**	3.12E-	9.31E-	1.12E-04	Adult
	03	06			04	04		
D	9.24E-	3.60E-	**	**	1.96E-	4.07E-	1.05E-03	Children
	04	06			03	03		
	6.02E-	2.34E-	**	**	1.28E-	2.65E-	6.81E-04	Adult
	04	06			03	03		
E	2.33E-	2.69E-	4.50E-	1.03E-	2.29E-	4.51E-	1.99E-03	Children
	03	03	05	04	03	03		
	1.52E-	1.75E-	2.93E-	6.68E-	1.49E-	2.94E-	1.30E-03	Adult
	03	03	05	05	03	03		
F	3.93E-	1.39E-	5.85E-	1.12E-	4.37E-	6.18E-	2.92E-03	Children
	03	03	04	03	03	03		
	2.56E-	9.06E-	3.81E-	7.30E-	2.84E-	4.02E-	1.90E-03	Adult
	03	04	04	04	03	03		

IIARD – International Institute of Academic Research and Development

Page 40

International Journal of Chemistry and Chemical Processes E-ISSN 2545-5265 P-ISSN 2695-1916, Vol 11. No. 2 2025 <u>www.iiardjournals.org online version</u>

	EDI VA Concent	LUES tration in 1	ng/kg					
		Pb	Cd	Ni	Zn	Fe	Cu	
	Cr							
G	8.09E-	5.70E-	1.79E-	1.26E-	3.08E-	6.31E-	3.61E-03	Children
	03	03	03	05	03	03		
	5.26E-	3.71E-	1.16E-	8.20E-	2.00E-	4.11E-	2.35E-03	Adult
	03	03	03	06	03	03		
Η	5.23E-	5.29E-	1.99E-	1.12E-	1.12E-	3.79E-	2.69E-03	Children
	03	03	03	03	03	03		
	3.40E-	3.44E-	1.30E-	7.27E-	7.26E-	2.47E-	2.53E-03	Adult
	03	03	03	04	04	03		

** = No EDI values because Cd and Ni levels were below detection limits Samples A, B, C, and D.

Table 4. HQ values of metals in crayfish samples

HQ VAL	JUES							
	Cr	Pb	Cd	Ni	Zn	Fe	Cu	
Α	0.063	0.002	**	**	0.003	0.006	0.023	Children
	0.693	0.001	**	**	0.002	0.0048	0.015	Adult
В	0.268	0.002	**	**	0.008	0.002	0.046	Children
	0.175	0.001	**	**	0.005	0.002	0.030	Adult
С	0.800	0.003	**	**	0.002	0.004	0.004	Children
	0.520	0.002	**	**	0.001	0.003	0.003	Adult
D	0.308	0.001	**	**	0.007	0.011	0.026	Children
	0.201	0.0001	**	**	0.004	0.007	0.017	Adult
Ε	0.777	0.673	0.045	0.001	0.008	0.013	0.050	Children
	0.507	0.438	0.029	0.001	0.005	0.008	0.033	Adult
F	0.310	0.348	0.585	0.006	0.015	0.017	0.073	Children
	0.853	0.227	0.381	0.004	0.009	0.011	0.048	Adult
G	0.697	0.425	0.790	0.001	0.010	0.018	0.090	Children
	0.753	0.928	0.160	0.001	0.007	0.011	0.059	Adult
H	0.743	0.323	0.990	0.005	0.004	0.011	0.067	Children
	0.133	0.860	0.300	0.004	0.002	0.007	0.063	Adult

** = No HQ values because Cd and Ni levels were below detection limits Samples A, B, C, and D.

International Journal of Chemistry and Chemical Processes E-ISSN 2545-5265 P-ISSN 2695-1916, Vol 11. No. 2 2025 www.iiardjournals.org online version

Tab	Cable 5. HI values of metals in crayfish samples						
HI	HI VALUES						
Α	0.066	Children					
	0.695	Adult					
B	0.270	Children					
	0.176	Adult					
С	0.803	Children					
	0.522	Adult					
D	0.309	Children					
	0.201	Adult					
Ε	0.495	Children					
	0.974	Adult					
F	0.248	Children					
	0.464	Adult					
G	0.912	Children					
	0.841	Adult					
Η	0.061	Children					
	0.297	Adult					

** = No HI values because Cd and Ni levels were below detection limits Samples A, B, C, and D.

Table 6. RI values of metals in crayitsh sampl

KI Y	VALUES				
	Cr	Pb	Cd	Ni	
Α	1.596E-03 ^a	8.420E-08 ^b	**	**	Children
	1.039E-03 ^a	5.470E-08 ^b	**	**	Adult
B	4.030E-04 ^a	6.890E-08 ^b	**	**	Children
	2.620E-04 ^a	4.480E-08 ^b	**	**	Adult
С	1.200E-03 ^a	1.150E-07 ^b	**	**	Children
	7.810E-04 ^a	7.470E-08 ^b	**	**	Adult
D	4.620E-04 ^a	3.060E-08 ^b	**	**	Children
	3.010E-04 ^a	1.990E-08 ^b	**	**	Adult
Ε	1.164E-03 ^a	2.280E-05 ^b	1.710E-05 ^b	9.370E-05 ^b	Children
	7.580E-04 ^a	1.490E-05 ^b	1.110E-05 ^b	6.080E-05 ^b	Adult
F	1.966E-03 ^a	1.180E-05 ^b	2.220E-04 ^a	1.021E-03 ^a	Children
	1.279E-03 ^a	7.700E-06 ^b	1.450E-04 ^a	6.640E-04 ^a	Adult
G	4.044E-03 ^a	4.840E-05 ^b	6.790E-04 ^a	1.150E-05 ^b	Children
	2.632E-03 ^a	3.150E-05 ^b	4.420E-04 ^a	7.460E-06 ^b	Adult
Η	2.615E-03 ^a	4.490E-05 ^b	7.570E-04 ^a	1.020E-03 ^a	Children
	1.702E-03 ^a	2.920E-05 ^b	4.930E-04 ^a	6.620E-04 ^a	Adult

** = No RI values because Cd and Ni levels were below detection limits Samples A, B, C, and D. $^{a} = RI > 10^{-4}$ and $^{b} = RI < 10^{-4}$

CONCLUSION

The health risk indices (Estimated Daily Intake, Hazard Quotient, Hazard Index, and Risk Index) of heavy metals indicate that dried crayfish samples sold in markets in Bayelsa State are safe for consumption.

REFERENCES

- Adah, C. A., Asemave, K. and Odeh, J. O. (2013). Evaluation of Heavy Metal Levels in Crayfish, Tilapia zilli and Clupea harengus from Nigeria. International Journal of Environment and Bioenergy, 5 (5): 99 - 107.
- Ahmad S. M., Birnin-Yauri U. A., Bagudo B. U., Sahabi D. M. (2013). Comparative analysis on the nutritional values of crayfish and some insects, African Journal of Food Science and Technology, 4 (1): 9-12
- Akesson, A., Julian, B. and Wolk, A. (2008). Long term exposure to cadmium and postmenopausal endometrial cancer incidence: A population based prospective cohort study. Cancer research, 68 (7): 6435 - 6441.
- Al-Ubaidi, A., Al-Janabi, Z., and Al-Kubaisi, A. (2014). Distribution of some heavy metals in Tigris River in Central Iraq. Baghdad. Journal of Science and Environment. 11 (2): 983– 990.
- Balasubramanian, R. and Wang, L.K. (2009). "Control, Management, and Treatment of Metal Emissions from Motor Vehicles". In Shammas, LK; Wang, JP; Chen, Y; et al. (eds.). Heavy Metals in the Environment, CRC Press: 475–490
- Gladys Guner, U (2010). Cadmium Bioaccumulation and Depuration by Freshwater Crayfish, Astacus leptodactylus. Bulletin of Environmental Contamination and Toxicology, 19 (2):23-28.
- Igbuku, A.U. (2015). Determination of Heavy Metals in Crayfish Sold in Selected Towns (Asaba, Ozoro, Patani and Sapele), Delta State Nigeria. Journal of Sciences and Multidisciplinary Research, 7 (52) 47 54.
- Igbuku, A.U. (2015). DETERMINATION OF HEAVY METALS IN CRAYFISH SOLD IN SELECTED TOWNS (Asaba, Ozoro, Patani and Sapele), DELTA STATE NIGERIA, Journal of Sciences and Multidisciplinary Research, 7 (2), 47 54
- James, L. (2011). Nickel as a heavy metal and it's health effects to man. Polish Journal of environmental studies, 16 (32): 145-154.
- Kirmani, M. N., Mohiuddin, S., and Zahir, E (2011). Determination of some toxic and essential and trace elements in some medicinal and edible plants of karachi city. Journal of Basic and Applied Sciences, 7 (7): 89-95
- Kurun, A, Nuray, B, Melike, E., Hüsamettin, B, Abdullah, A and Mahmut, S (2009). Determination of Total metal levels in crayfish Astacus leptodactylus. Journal of Environmental Monitoring and Assessment 169, (169):385–396.
- Pyary Anisha, Pulickal Santhosh Athira, Biju Anagha, Partheeban Emmanuel Charles, Krishnamurthy Prabakaran, Rajendran Rajaram (2023). First report on occurrence of heavy metals in dried fishes from major fishing villages in Kerala coast, Southwest India, Hygiene and Environmental Health Advances 6, 1-8
- Qian, P., Luís M. N., Ben K., Fei, D. and Huan, Z. (2015). Bioaccessibility-adjusted probabilistic risk assessment. Journal of Environment International, 88 (17): 261–268

Page **43**

- Shaban Abd El-Halim El-Sherif, Safwat Abd El-Ghafour (2015). Nutritive value of canned River Nile Crayfish (Procambarus clarkii) products, Egyptian Journal of Aquatic Research, 41, 265 – 272
- USEPA (United States Environmental Protection Agency) (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation.
- Victor Ighariemu, Matthew Owhonda Wegwu, and Lawrence Chijoke Chuku (2023). Evaluation of Heavy Metals and Health Risk Assessment of Shellfish Contaminated in Santa Barbara River, Niger Delta, Nigeria, Current Research in Interdisciplinary Studies 2(1): 1 20.
- Waribo, A., Bartimaeus, E. and Onuoha, C. (2019). Assessment of Some Heavy Metal Content of Dried Crayfish. Journal of Fisheries and Aquatic Research, 5(5): 1-6.
- Waribo H. A., Bartimaeus E. S. and Onuoha I. C. (2019). Assessment of Some Heavy Metal Content of Dried Crayfish Sold in Creek Road Market, Borokiri, Port Harcourt, Nigeria, Asian Journal of Fisheries and Aquatic Research, 5(1), 1-6